The Impacts of Surface Microchannels on the Transport Properties of Porous Fibrous Media Using Stochastic Pore Network Modeling

Author:

Huang Xiang,Zhou Wei,Deng Daxiang,Liu Bin,Jiang Kaiyong

Abstract

A stochastic pore network modeling method with tailored structures is proposed to investigate the impacts of surface microchannels on the transport properties of porous fibrous media. Firstly, we simplify the original pore network extracted from the 3D images. Secondly, a repeat sampling strategy is applied during the stochastic modeling of the porous structure at the macroscale while honoring the structural property of the original network. Thirdly, the microchannel is added as a spherical chain and replaces the overlapped elements of the original network. Finally, we verify our model via a comparison of the structure and flow properties. The results show that the microchannel increases the permeability of flow both in the directions parallel and vertical to the microchannel direction. The microchannel plays as the highway for the pass of reactants while the rest of the smaller pore size provides higher resistance for better catalyst support, and the propagation path in the network with microchannels is more even and predictable. This work indicates that our modeling framework is a promising methodology for the design optimization of cross-scale porous structures.

Funder

Promotion Program for Young and Middle-aged Teacher in Science and Technology Research of Huaqiao University

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3