Investigation of Phase Segregation in p-Type Bi0.5Sb1.5Te3 Thermoelectric Alloys by In Situ Melt Spinning to Determine Possible Carrier Filtering Effect

Author:

Kim Dong Ho,Kim TaeWanORCID,Lee Se Woong,Kim Hyun-SikORCID,Shin Weon HoORCID,Kim Sang-ilORCID

Abstract

One means of enhancing the performance of thermoelectric materials is to generate secondary nanoprecipitates of metallic or semiconducting properties in a thermoelectric matrix, to form proper band bending and, in turn, to induce a low-energy carrier filtering effect. However, forming nanocomposites is challenging, and proper band bending relationships with secondary phases are largely unknown. Herein, we investigate the in situ phase segregation behavior during melt spinning with various metal elements, including Ti, V, Nb, Mo, W, Ni, Pd, and Cu, in p-type Bi0.5Sb1.5Te3 (BST) thermoelectric alloys. The results showed that various metal chalcogenides were formed, which were related to the added metal elements as secondary phases. The electrical conductivity, Seebeck coefficient, and thermal conductivity of the BST composite with various secondary phases were measured and compared with those of pristine BST alloys. Possible band alignments with the secondary phases are introduced, which could be utilized for further investigation of a possible carrier filtering effect when forming nanocomposites.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3