ZnO Semiconductor Nanoparticles and Their Application in Photocatalytic Degradation of Various Organic Dyes

Author:

Luque-Morales Priscy Alfredo,Lopez-Peraza Alejandra,Nava-Olivas Osvaldo Jesus,Amaya-Parra Guillermo,Baez-Lopez Yolanda AngelicaORCID,Orozco-Carmona Victor Manuel,Garrafa-Galvez Horacio EdgardoORCID,Chinchillas-Chinchillas Manuel de Jesus

Abstract

The biosynthesis of oxide semiconductor nanoparticles (NPs) using materials found in nature opens a wide field of study focused on sustainability and environmental protection. Biosynthesized NPs have the capacity to eliminate organic dyes, which pollute water and cause severe damage to the environment. In the present work, the green synthesis of zinc oxide (ZnO) NPs was carried out using Capsicum annuum var. Anaheim extract. The photocatalytic elimination of methylene blue (MB), methyl orange (MO), and Rhodamine B (RhB) in UV radiation was evaluated. The materials were characterized by scanning and transmission electron microscopy (SEM and TEM) and SEM-coupled energy dispersive spectroscopy (EDS), attenuated total reflectance-infrared (ATR-IR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), Photoluminescence (PL), and ultraviolet-visible spectroscopy (UV-Vis). The TEM analysis showed the NPs have an average size of 40 nm and quasi-spherical shape. ATR-IR showed the ZnO NPs contained functional groups from the extract. The analysis through XRD indicated that the NPs have a hexagonal zincite crystal structure with an average crystallite size of approximately 17 nm. The photoluminescence spectrum (PL) presented an emission band at 402 nm. From the UV-Vis spectra and TAUC model, the band-gap value was found to be 2.93 eV. Finally, the photocatalytic assessment proved the ZnO NPs achieved 100% elimination of MB at 60 min exposure, and 85 and 92% degradation of MO and RhB, respectively, at 180 min. This indicates that ZnO NPs, in addition to using a friendly method for their synthesis, manage to have excellent photocatalytic activity in the degradation of various organic pollutants.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3