Proton-Ion Conductivity in Hexagonal Wurtzite-Nanostructured ZnO Particles When Exposed to a Reducing Atmosphere

Author:

Li Jinpeng,Mushtaq Naveed,Arshad NailaORCID,Shah M. A. K. YousafORCID,Irshad Muhammad SultanORCID,Yan Rong,Yan Senlin,Lu Yuzheng

Abstract

Zinc oxide (ZnO), a direct wide band gap semiconductor (≥3.30 eV), has widespread potential for applications in energy devices and related industries. The initial physical demonstration of ZnO in ceramic fuel cells (CFCs) gave a new view of developing high ionic conductivity for multifunctional semiconductor technology. However, in the present work, we successfully synthesized highly textured nanoparticles of ZnO using a hydrothermal method followed by sintering in a reducing atmosphere. The resultant ZnO materials as electrolytes showed efficient ionic conductivity (5.28 × 10−2 S cm−1) and an excellent power density of 520 mW cm−2 ± 5% at 550 °C for low-temperature ceramic fuel cells (LT-CFCs). The achievement of enhanced ionic conductivity without any external ions or cation doping in the CFC was anticipated, since there was a rare possibility of vacancies in the bulk ZnO structure to conduct oxygen ions or protons. Therefore, we found that laterally the surfaces of the ZnO nanoparticles could be textured to become oxygen-deficient when sintered in an H2 atmosphere, which suggests a special mechanism for effective ionic transport. Furthermore, experimental analyses such as SEM, XPS, UV–visible, and EIS methods were performed to analyze the changes in the structural properties and mechanism of ionic transport in ZnO nanoparticles. The presented work provides insights into a novel approach for developing high ionic conductivity in electrolytes in low-cost semiconductor oxides such as ZnO for energy storage and conversion devices.

Funder

Huainan Union University

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3