Fourier Transformation Infrared Spectroscopic Analysis of Enamel Following Different Surface Treatments: An Invitro Study

Author:

Sharma Sonali,Hegde Mithra N.,Ramesh Sindhu

Abstract

Dental caries is an oral disease that has a global footprint. The first onslaught is subsurface, and at this stage, it can be remineralized. This study attempts to analyze the compositional changes that occur during demineralization and different surface treatment remineralization protocols. Aim: The aim of this study is to evaluate the compositional changes caused by different surface treatments on demineralized enamel. Methodology: Six extracted intact posterior teeth were selected and sectioned mesiodistally to achieve two halves. Each half was further divided into six equal sizes to achieve 12 samples per tooth. Except for one sample, which served as the control for that particular tooth, the remaining samples were placed in a demineralizing solution (acetate 0.1 Mol/L, calcium 0.1 Mol/L, phosphate 0.1 Mol/L and fluoride 0.1 mg/L pH 5.0) for 24 h. The samples were then assigned to groups and surface-treated as described below. The samples were grouped as follows so as to subject each sample to the following different surface treatments: Group 1: control, Group 2: Demineralized, Group 3: Laser 1 Watt, Group 4: Laser 2 Watts, Group 5: Laser 3 Watts, Group 6: Laser 3.5 Watts, Group 7: CPP-ACPF, Group 8: CPP-ACPF & Laser 3.5 Watts, Group 9: Enafix, Group 10: Enafix & Laser 3.5 Watts, Group 11: MI Paste and Group 12: MI Paste & Laser 3.5 Watts. The laser used for irradiating the samples in the respective laser groups utilized different wattages of an 810 nm aluminum–gallium–arsenide laser for 30 s. The samples were analyzed using Fourier transform infrared spectrometry coupled with attenuated total reflectance (FTIR-ATR). A qualitative analysis was performed. Result: The 3.5 watts aluminum–gallium–arsenide laser followed by CPP-ACPF caused compositional changes in the organic and inorganic components of the enamel tissues, and these changes were similar to those of the control teeth. Conclusion: Aluminum–gallium–arsenide laser irradiation alone does cause compositional changes and makes the enamel conducive for remineralization.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Reference31 articles.

1. Dental caries;Nat. Rev. Dis. Prim.,2017

2. A review of the common models used in mechanistic studies on demineralization-remineralization for cariology research;Dent. J.,2017

3. Biofilm inhibition in Candida albicans with biogenic hierarchical zinc-oxide nanoparticles;Biomater. Adv.,2021

4. Therapeutic Strategies Targeting Cariogenic Biofilm Microenvironment;Adv. Dent. Res.,2018

5. Contemporary perspective on the use of fluoride products in caries prevention;Br. Dent. J.,2013

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3