Morphology Control of PbZrxTi1-xO3 Crystallites under Alkaline Hydrothermal Conditions

Author:

Kržmanc Marjeta MačekORCID,Kutnjak ZdravkoORCID,Spreitzer MatjažORCID

Abstract

Outstanding ferroelectric and piezoelectric properties of PbZrxTi1-xO3 (PZT) make nano and sub-micrometer particles of this material interesting for future nanotechnological applications as well as for fundamental studies of ferroelectricity at the nanoscale. In the present work, the prospects of a new hydrothermal approach were explored to control the particle size, aggregation stage, and composition of the PZT with the target composition of Zr/Ti = 60/40 (x = 0.6). Starting with water-soluble Zr-, Ti-, and Pb-precursors, the PZT formation was examined in the broad base (KOH) concentration range. The PZT particle size and composition were governed by the ratio of KOH with respect to Pb and not by the absolute KOH concentration (cKOH). The incorporation of Zr into the PZT perovskite phase began to decline at KOH:Pb ≤ 1.7 and at KOH:Pb > 20. In the concentration range of 20 ≥ KOH:Pb > 1.5, the PZT particles adopted a cube-like shape, the size of which decreased with a decrease in the KOH:Pb ratio. The smallest (<200 nm) and well-separated PZT particles were obtained at KOH:Pb = 1.7. The prevailing PZT crystal structure at a Zr/Ti composition of around 60/40 was rhombohedral; the tetragonal phase also began to appear in Ti-richer PZT compositions (Zr/Ti ≤ 50/50). The developed understanding established the basis for further tailoring of PZT particle morphologies for application-oriented or fundamental research.

Funder

Slovenian Research Agency

Ministry of Higher Education, Science and Technology, M-era.Net

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3