Abstract
The paper addresses the development of composite scintillation materials providing simultaneous real-time monitoring of different types of ionizing radiation (α-, β-particles, γ-rays) in mixed fluxes of particles and quanta. The detectors are based on composite heavy oxide scintillators consisting of a thin single-crystalline film and a bulk single-crystal substrate. The film and substrate respond to certain types of ionizing particles, forming together an all-in-one composite scintillator capable of distinguishing the type of radiation through the different time characteristics of the scintillation response. Here, we report the structure, composition, and scintillation properties under different ionizing radiations of (Lu,Gd,Tb)3(Al,Ga)5O12:Ce films deposited using liquid phase epitaxy onto Gd3(Al1−xGax)5O12:Ce (GAGG:Ce) single-crystal substrates. The most promising compositions with the highest light yields and the largest differences in scintillation decay timing under irradiation with α-, β-particles, and γ-rays were selected. Such detectors are promising for environmental security purposes, medical tomography, and other radiation detection applications.
Funder
Polish National Agency for Academic Exchange
National Science Center
Czech Ministry of Education, Youth and Sports
Czech Science Foundation
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献