Influence of Austenitisation Time and Temperature on Grain Size and Martensite Start of 51CrV4 Spring Steel

Author:

Bajželj AnžeORCID,Burja JakaORCID

Abstract

51CrV4 spring steel is a martensitic steel grade that is heat treated by quenching and tempering. Therefore, austenitisation is an important step that influences steel properties. The main goal of austenitisation is to obtain a single-phase austenite structure that will transform into martensite. We studied the influence of austenitisation parameters on grain growth and martensite transformation temperatures. The samples were quenched from different austenitisation temperatures (800–1040 °C) and were held for 5, 10 and 30 min. The martensite start transformation temperatures (MS) were determined from dilatometric curves, and the hardness was measured using the Vickers method. The microstructure of the samples and the size of the prior austenite grains were characterised using optical microscopy. The increase in the size of the prior austenite crystal grains increases the MS temperature. However, this trend is visible up to 960 °C, where the results start to deviate. High temperatures, 960 °C and above, cause both grain growth and increased carbide dissolution along with chemical homogenization of the steel. The added influence of strong solute diffusion caused a big deviation in the results. The stability of carbides during austenitisation were evaluated with scanning electron microscopy (SEM) and thermodynamic calculations of equilibrium phases using the Thermo-Calc program. MC-type vanadium carbides are stable up to 956 °C under equilibrium conditions, but the SEM results show that they were present in the microstructure even after annealing at 1040 °C. This means that crystal growth is slowed down, which is positive, and that the austenite contains less carbon, so the hardness is lower.

Funder

Slovenian Research Agency

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3