Abstract
Etch pits could form on an exposed surface of a crystal when the crystal is exposed to an etching environment or chemicals. Due to different dissolution rates along various crystalline directions in a crystal, the dissolution process is anisotropic; hence, etch pits usually have a regular shape. Here, the morphology and origin of the regular-shaped etch pits are discussed firstly; then, factors which could affect the morphology and density of etch pits are shown; finally, the state of the art of etch pit technology and the utilization of etch pits is presented. Traditionally, etch pits are utilized to evaluate the dislocation density and some defect-related properties. Now, in the modern fabrication industries, the relationship between etch pits and defects has been utilized more skillfully. High-quality crystals can be fabricated by controlling dislocations revealed by etch pits. Meanwhile, with the as-revealed dislocation as the diffusion path of atoms, new crystals will emerge in corresponding etch pits.
Funder
National Natural Science Foundation of China for Exploring Key Scientific Instruments
Wenhai Program of the S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology
Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Sciences
Nantong Science and Technology Development Funds
Central Government Guiding Funds for Local Science and Technology Development
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献