Grain Boundary Engineering and Its Effect on Intergranular Corrosion Resistance of a Ni-Cr-Mo Based C276 Superalloy

Author:

Zhang Chi,Lin Ling,Chen Renchao,Zhang Liwen,Shao Zhiwen

Abstract

A Ni-Cr-Mo-based C276 superalloy was cold rolled to 5–40% and annealed at 1050 °C for 30 min. The microstructure and grain boundary character distribution after cold rolling and annealing were characterized. Grain refinement and a certain amount of coincident-site lattice (CSL) boundaries were obtained through recrystallization. The fraction of CSL boundaries reached peak at the cold rolling of 15% and annealing at 1050 °C for 30 min, which was the critical condition for completed recrystallization. In addition, sensitization treatments and double-loop electrochemical potentiokinetic reaction (DL-EPR) tests were applied to the cold rolled and annealed samples. The samples with a high fraction of CSL boundaries showed higher intergranular corrosion resistance as compared to the ones with a low fraction of CSL boundaries. It implies that the intergranular corrosion resistance of C276 superalloy can be enhanced by optimizing the grain boundary structure through cold rolling and annealing.

Funder

National Key Research and Development Program of China

Fundamental Research Funds for the Central Universities of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3