High Thermal Stability and Color Purity of Y2SrAl4SiO12: Eu3+ Garnet-Variant-Structured Phosphor for Warm White Light LED-Lamp

Author:

Chen Xinhua,Xu Qingliang,Hussain FayazORCID,Yang Chen,Sheng Weiqin,Luo Xinjiang,Liu BingORCID,Sun Shikuan,Wang DaweiORCID,Song KaixinORCID

Abstract

Red LEDs with a high color purity and high color rendering index are often used to compensate for the lack of red-light components in current white LEDs. Therefore, the new type of garnet-structured high color purity red phosphor Y2−xSrAl4SiO12: xEu3+ was synthesized by the solid-state method. The band gap structure of the host matrix was studied through the DFT calculation and found that the matrix belongs to a direct band gap structure with a band gap size of 4.535 ev. The phosphor exhibits a wide excitation spectrum under the monitoring of 710 nm. The strongest excitation wavelength is 393 nm, and it exhibits bright red light under the excitation of 393 nm, and the emission peak positions are located at 570 nm, 597 nm, 613 nm, 650 nm, 710 nm and 748 nm, respectively, which are attributed to the 5D0→7Fj of Eu3+ (j = 0–5) electronic transitions. In the crystal structure of Y2SrAl4SiO12, Eu3+ occupies a symmetry site. The compositional changes and thermal studies found favorable at 20% mol. At this concentration, the luminescence intensity gradually weakened due to the Eu3+ electric multi-level interaction. It is worth noting that the emission intensity of Y2SrAl4SiO12: 20%Eu3+ at 433 K can be maintained to 92% of that at 293 K. Finally, we combined it with the NUV chip and packaged it into a red LED with a color purity of up to 90% and a correlated color temperature of 1492 K. The high purity, low color temperature and thermal stability indicate that it has a place in LED applications.

Funder

National Natural Science Foundation of China

Guangdong Key Platform & Programs of the Education Department of Guangdong Province

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3