Modeling Hardness Evolution during the Post-Welding Heat Treatment of a Friction Stir Welded 2050-T34 Alloy

Author:

Galisson Sébastien,Carron DenisORCID,Le Masson Philippe,Stamoulis Georgios,Feulvarch EricORCID,Surdon Gilles

Abstract

A unified constitutive model of yield strength evolution during heat treatment has been revised to simulate the hardness evolution during the post-welding heat treatment of AA2050-T34 Friction Stir Welded (FSW) plates. The model considers the strengthening by dislocations, solid solution, clusters, and the T1 phase. As a result, the successful prediction of yield strength evolution during the aging of AA2050 with different initial tempers has been achieved. The kinetics of precipitation of the T1 phase during heat treatment has been characterized by electrical resistivity on the unwelded and FSW samples. The obtained results have been used to check the ability of the model to simulate the evolution of the relative volume fraction of the T1 phase and hardness during the post-welding heat treatment in the different zones of FSW samples. Despite some observed discrepancies on the top and bottom of the weld joint, the revised numerical model captures well the overall hardness profile after the post-weld heat treatment.

Funder

Dassault Aviation

Université Bretagne Sud

Université de Bretagne Occidentale

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3