Electron-Beam Welding Cu and Al6082T6 Aluminum Alloys with Circular Beam Oscillations

Author:

Kaisheva Darina,Anchev AngelORCID,Dunchev Vladimir,Kotlarski GeorgiORCID,Stoyanov Borislav,Ormanova Maria,Valkov StefanORCID

Abstract

In this study, we present the results from electron-beam welding operations applied on copper and Al6082T6 aluminum alloys. The influence of beam-scanning geometries on the structure and mechanical properties of the welded joint is studied. The experiments were conducted using a circle oscillation mode with an oscillation radius of 0.1 mm and 0.2 mm. The beam deflection was set to 0.4 mm with respect to the side of the aluminum alloy, and the beam power was set at 2700 W. The phase composition of the obtained welded joints was studied by X-ray diffraction (XRD). Scanning electron microscopy (SEM) was used for the investigation of the microstructure of the joints. The chemical composition was investigated by using energy-dispersive X-ray spectroscopy (EDX). The mechanical properties were studied by micro-hardness investigations. The fusion zone of the weld seam contains three phases—an aluminum matrix, an ordered solid solution of copper and aluminum in the form of CuAl2, and pure copper. Electron beam-scanning geometries have significant influences on the structure of the weld. Increasing the beam oscillation’s radius leads to a decrease in intermetallic phases and improves homogeneity. The measured microhardness values in the fusion zone are much higher than the ones measured in the base metals due to the formation of intermetallic phases. The microhardness of the weld joint formed using an oscillation radius of 0.2 mm was much lower compared to the one formed using an oscillation radius of 0.1 mm.

Funder

Bulgarian National Scientific Fund

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3