Abstract
Strong terahertz (THz) emission from the methylammonium lead iodide (MAPbI3) perovskite semiconductors has been observed following above-bandgap photoexcitation, yet local THz responses of crystalline microstructures are absent. We implement laser THz emission microscope (LTEM), yet-to-be applied to the perovskite semiconductors, as a novel and complementary tool to evaluate the electronic and grain heterogeneity of MAPbI3 thin films. Two MAPbI3 samples with different grain sizes are studied. Using this approach, we show that the one with a larger grain size gives more uniform THz radiation. More significant spatial THz intensity fluctuation is observed for the sample with a smaller grain size.
Funder
Ames Laboratory
National Science Foundation
United States Department of Energy
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献