2D Monte Carlo Simulation of Cocrystal Formation Using Patchy Particles

Author:

Ranguelov BogdanORCID,Nanev ChristoORCID

Abstract

Cocrystals of Active Pharmaceutical Ingredients (APIs) are an attractive therapeutic alternative to salt formations. However, due to the molecular scale processes involved, the earliest stages of cocrystal formation remain poorly understood. In this paper, some light is shed on the thermodynamics and kinetics of co-crystallization. Importantly, to mimic the molecular scale processes of cocrystal formation, we use 2D Monte Carlo simulations and a computational model with short-range attraction and a mixture of two types of patchy particles (PPs) monomers. Each type possesses four patches, grouped in two by two, and each couple of patches is characterized by its specific placement on the circumference of the monomer and corresponding patch strength (a strong and narrow or weak and wide interaction). The spatial placement of the patches on both PPs monomers (alternating periodically through 60 and 120 degrees and vice versa) selected by us shows the emergence of both rhombohedral (metastable) and trihexagonal (stable) Kagome-like structures. The Kagome-like structures are preceded by formation of two types of trimers involving strong bonds only, or mixed trimers of strong and weak bonds, the later serving as building blocks for the finally generated Kagome patchy cocrystal, after prolonged simulation times. The step-by step process governing the cocrystal formation is discussed in detail, concerning the temperature interval, concentrations of PPs, the specific patch geometry and patch anisotropy as well. It is to be hoped that an understanding of the mechanisms of co-crystallization can help to control practical cocrystal synthesis and the possible phase transformations.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3