Improved Optoelectronic Properties of Nanostructured Eu Doped Bi2S3 Thin Films for the Detection of UV Light

Author:

Shkir MohdORCID,Ben Gouider Trabelsi AmiraORCID,Alkallas Fatemah H.ORCID,AlFaify Salem,Pandit BidhanORCID,Ubaidullah MohdORCID

Abstract

Due to a suitable band gap and high light absorption behavior, Bi2S3 is showing major success in photo-to-current conversion applications. In this current work, the authors used a low-cost nebulizer spray pyrolysis method to create nano-sized pure and unique Eu contents (1–5 wt.%)-loaded Bi2S3 thin layers by taking bismuth nitrate and thiourea as the source materials. The parent and Eu doped Bi2S3 thin films, deposited on a well-cleaned glass substrate at 350 °C, were analyzed using a variety of characterization approaches, including FESEM, EDS, XRD, PL, UV-Vis, and I-V, to describe the morphologies, compositions, crystallinity, defect states, band gap, and photodetection capability, respectively. The X-ray diffraction outcomes confirmed an orthorhombic polycrystalline structure for all Eu concentrations, and they were highly oriented along the (130) plane. Incorporation of Eu into the host matrix improves the intensity of all the peaks, and the crystallite size (25 nm) was found to be highest for the 3% Eu doped Bi2S3 thin film. The formation of a nanowire-like morphology was confirmed thorough field emission electron microscopy analysis, which is preferred for photo detectors. Upon excitation at 325 nm, grown pure and Eu doped Bi2S3 thin films indicated five emission peaks at 387, 418, 439, 480, and 523 nm, respectively. All the films showed significant absorption in the UV region, and importantly, a narrowing of the band gap is seen from 2.29 to 2.17 eV. Finally, the current-voltage characteristics of the pure and Eu doped Bi2S3 thin films were tested using silver contacts as electrodes. The results showed that the 3% Eu doped Bi2S3 sample showed a higher UV photocurrent characteristic, with high specific detectivity (1.82 × 1010 Jones), photoresponsivity (3.88 × 10−1 AW−1), external quantum efficiency (125%), and rapid photo response, as well as a recovery speed of 0.3 s and 0.4 s, due to the effective light absorption and photocarrier generation. We believe that our study may provide a cost-effective approach for UV photosensor applications.

Funder

Princess Nourah bint Abdulrahman University

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3