Abstract
Biomaterials calcify upon implantation in contact with biological fluids, which are supersaturated with respect to more than one crystalline phase of calcium phosphate. The implantation of intraocular lenses (IOLs) for cataract treatment has been hailed as a major advance. Hydrophilic acrylic IOLs, made of Poly(2-hydroxyethyl methacrylate) (PHEMA), upon contact with aqueous humor, exhibit significant incidence of opacification, due to the formation of calcium phosphate crystals, mainly hydroxyapatite (Ca5(PO4)3OH, HAP) on the surface or in their interior. The aqueous humor is supersaturated with respect to HAP. Clinical findings were duplicated by laboratory experiments through the development of appropriate experimental models which included batch reactors, well stirred operating at constant supersaturation (CCR) and reactors simulating anterior eye chamber (ECSR). In both CCR and ECSR, simulated aqueous humor was used. In ECSR the flow rate was the same as in the eye chamber (2.5 mL per 24 h). HAP formed both on the surface and inside the IOLs tested. Induction times preceding the crystallization of HAP on the surface of the IOLs and crystal growth rates were measured. Surface hydroxyl ionized groups favored the development of locally high supersaturation by surface complexation. In the interior of the IOLs, HAP formed by the diffusion of the calcium and phosphate ions inside the polymeric matrix.
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献