Abstract
Magnesium alloys have attracted considerable interest as prospective biodegradable materials in cardiovascular stents because of their metal mechanical properties and biocompatibility. However, fast degradation and slow endothelialization results in the premature disintegration of mechanical integrity and the restenosis of implanted Mg-based stents, which is the primary hurdle limiting their predicted clinical applicability. The development of bioinspired strategies is a burgeoning area in cardiovascular stents’ fields of research. Inspired by the unique features of lotus leaves, pitcher plants, healthy endothelial cells (ECs), marine mussels, and extracellular matrix, various bioinspired strategies have been developed to build innovative artificial materials with tremendous promise for medicinal applications. This perspective focuses on bioinspired strategies to provide innovative ideas for reducing corrosion resistance and accelerating endothelialization. The bioinspired strategies are envisaged to serve as a significant reference for future research on Mg-based medical devices.
Funder
National Natural Science Foundation of China
Open Fund of Magnetic Confinement Fusion Laboratory of Anhui Province
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献