Hyaluronic Acid-Protein Conjugate Modified Iron-Based MOFs (MIL-101 (Fe)) for Efficient Therapy of Neuroblastoma: Molecular Simulation, Stability and Toxicity Studies

Author:

Nikam Ajinkya N.ORCID,Pandey Abhijeet,Nannuri Shivanand H.ORCID,Fernandes Gasper,Kulkarni Sanjay,Padya Bharath SinghORCID,Birangal SumitORCID,Shenoy Gautham G.,George Sajan D.,Mutalik SrinivasORCID

Abstract

Iron-based metal-organic frameworks (MIL (101)) have recently gained attention in materials science for biomedical applications. In the present work, Iron-based MOF (MIL-101(Fe)) were coated with lactoferrin (Lf) conjugated with hyaluronic acid (HA) and investigated its potential for delivering 5-fluorouracil (5-FU), along with assessing the toxicity profile. The synthesised nanoparticles were extensively characterised using spectroscopic, X-Ray, thermal and electron microscopic techniques. 5-FU was loaded into MOFs, and the drug-loading efficiency and drug release pattern were studied, along with stability testing in pH and serum protein. The toxicity of MIL-101(Fe) was assessed using both in vitro and in vivo techniques such as the haemolysis assay, cell viability assay and acute and subacute toxicity studies in animals. In silico molecular simulation was done to assess the Lf and Tf interaction. The molecular interaction of Lf with Transferrin (Tf) showed strong molecular interaction and negligible fluctuation in the RMSD (root mean square deviation) values. The MOFs were stable and demonstrated sustained drug release patterns. The in vitro cell studies demonstrated biocompatibility and enhanced cellular internalisation of MOFs. The in vivo toxicity studies supported the in vitro results. The synthesised MOFs demonstrated potential as a targeted delivery platform for cancer targeting.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3