Hall Current Effect of Magnetic-Optical-Elastic-Thermal-Diffusive Non-Local Semiconductor Model during Electrons-Holes Excitation Processes

Author:

Chteoui Riadh,Lotfy KhaledORCID,El-Bary Alaa A.ORCID,Allan Mohamed M.

Abstract

This paper investigates a theoretical model for the interaction between electrons and holes (E/H) in elastic non-local semiconductors. When the medium is activated by photo-energy because of high temperatures, an optical-elastic-thermal-diffusion (OETD) process occurs and is described by this mathematical-physical model. A study is conducted on the impact of the Hall current brought on by the collapse of a strong magnetic field on the exterior of the non-local semiconductor medium. A Hall effect is brought on by the magnetic field’s effect on the density of magnetic flux. The Laplace transform with initial conditions of the dimensionless main physical fields in one dimension (1D) is used to demonstrate this. Mathematically, in the Laplace domain, the generic linear solutions for the strain and temperature distributions, as well as charge carrier holes and electrons, are derived. The key physical fields’ complete solutions in the time domain are obtained by numerically simulating a few thermal, mechanical, and optical conditions at the free surface of the semiconductor using the Laplace inverse approximation technique. For silicon material, the photo-thermoelasticity theory’s Hall current effect, non-local parameter, and effects of thermal relaxation durations are graphically displayed and analyzed.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Reference36 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3