Abstract
The tensile properties of a Ni-Co-based superalloy were investigated from room temperature to 900 °C. From 25 to 650 °C, the yield strength and tensile strength of the alloy decreased slightly, while the elongation decreased sharply. From 760 °C to 900 °C, the yield strength and tensile strength were greatly reduced, while the elongation also had a low value. With the increase in temperature, the deformation mechanism transformed from anti-phase boundary shearing to stacking fault shearing, and then from deformation twinning to Orowan bypassing, respectively. Deformation twins were generated in the deformed alloy with high-density stacking faults and they can contribute to the high strength. The alloy in this study has good mechanical properties and hot working characteristics below 760 °C and can be used as a turbine disk, turbine blade, combustion chamber, and other aircraft structural parts.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献