Nanoindentation on the Transformation of LPSO Phases during Different Solution Heat Treatments in an Mg-Dy-Nd-Zn-Zr Alloy

Author:

Maier PetraORCID,Schmahl Merle,Clausius Benjamin,Joy Charis,Fleck ClaudiaORCID

Abstract

The objective of this study is the investigation of nanomechanical properties using nanoindentation of extruded and heat-treated Mg-Dy-Nd-Zn-Zr, with an emphasis on the transformation of long-period stacking-ordered (LPSO) phases. Solution heat treatment was performed with different heat treatment for durations on hot extruded Mg-Dy-Nd-Zn-Zr to monitor the transformation of LPSO phases, as well as to keep track of microstructural changes. The initial fine-grained microstructure, with blocky and lamellar LPSO structures within the matrix, first transformed into coarser grains with fewer LPSO lamellae, which then increased in amount again at higher annealing duration. The blocky LPSO phases, which have the highest hardness compared to the matrix grains with and without LPSO lamellae, consistently decrease in quantity, as so does the trend in their hardness value. The Mg matrix grains with LPSO lamellae show a lower hardness compared to the Mg matrix grains without or with a just few lamellar LPSO phases, and increase in quantity at long annealing durations. The overall hardness of the microstructure is essentially determined by the LPSO lamellae-containing grains and reaches a peak at 24 h. There is another peak found for the grain size values; however, this is at later annealing duration, at 72 h. The reduction in grain size towards longer annealing durations goes along with a reactivated formation of LPSO lamellae.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3