Abstract
Direct laser writing (DLW) in liquid crystals (LCs) enables a range of new stimuli-responsive functionality to be realized. Here, a method of fabricating mechanically tunable diffraction gratings in stretchable LC gels is demonstrated using a combination of two-photon polymerization direct laser writing (TPP-DLW) and ultraviolet (UV) irradiation. Results are presented that demonstrate the fabrication of a diffraction grating that is written using TPP-DLW in the presence of an electric field in order to align and lock-in the LC director in a homeotropic configuration. The electric field is subsequently removed and the surrounding regions of the LC layer are then exposed to UV light to freeze-in a different alignment so as to ensure that there is a phase difference between the laser written and UV illuminated polymerized regions. It is found that there is a change in the period of the diffraction grating when observed on a polarizing optical microscope as well as a change in the far-field diffraction pattern when the film is stretched or contracted. These experimental results are then compared with the results from simulations. The paper concludes with a demonstration of tuning of the far-field diffraction pattern of a 2-dimensional diffraction grating.
Funder
Engineering and Physical Sciences Research Council
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献