Influence of Phase Composition on Stress-Corrosion Cracking of Ti-6Mo-5V-3Al-2Fe-2Zr Alloy in 3.5% NaCl Solution

Author:

Zhang HaoyuORCID,Sun JieORCID,Zhou Ge,Yu Xiaoling,Wang Chuan,Gao Jian

Abstract

The metastable β titanium alloys used in marine engineering applications suffered from stress-corrosion cracking in seawater. The different phase composition leads to the distinct stress-corrosion cracking behaviors of the alloy. In this work, the influence of the phase composition on the stress-corrosion cracking of a novel metastable β titanium alloy Ti-6Mo-5V-3Al-2Fe-2Zr was investigated. The alloys with different phase compositions were prepared by three types of thermal-mechanical processing, i.e., the single β phase (assigned as M(β)), the β phase plus fine α phase (assigned as M(β+fα)), and the β phase plus coarsened α phase (assigned as M(β+cα)). The electrochemical tests and constant-stress loading tests were performed, and the phase composition and microstructure were analyzed by XRD and SEM. The M(β) alloy exhibits the best corrosion resistance as well as the compact properties of oxide films, followed by the M(β+fα) alloy and the M(β+cα) alloy. Tear ridges and a flat facet with an undulating surface were observed on the stress-corrosion cracking fracture surface, which indicated the occurrence of high-degree dislocations movement and localized plastic deformation. Absorption-induced dislocation emission (AIDE) and hydrogen-enhanced localized plasticity (HELP) are the primary mechanisms for the stress-corrosion cracking of the alloy. The increased amount of β phase has a beneficial effect on stress-corrosion cracking resistance. For the alloy with β and α phases, the α phase with wider spacing has an adverse effect on stress corrosion performance.

Funder

National Natural Science Foundation of China

Technological Tacking Project of Liaoning Province

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3