A Novel Study on the Effect of Tool Offset in Friction Stir Processing for Mg-NiTi Composite

Author:

Lone Nadeem FayazORCID,Bajaj DhruvORCID,Gangil NamrataORCID,Mohammed Sohail M. A. K.,Chen DaolunORCID,Siddiquee Arshad Noor

Abstract

Mg-NiTi-based metal matrix composites are appropriate solutions for the two most important goals of material engineers in the present day, i.e., imparting functional behaviour and the light weighting of metallic structures. In recent years, due to its solid-state nature, the development of Mg-based metal matrix composites has largely benefited from friction stir processing. Despite the great effort of researchers in the domain of friction stir welding and processing, finding optimum process parameters for efficient material mixing and consolidation remains a rigorous and exhaustive challenge. Tool offset variation has been seen to aid the integrity and strength of friction stir welds; however, its effect upon the stir zone structure, material flow, particle distribution, and defect formation has not been investigated for friction stir processing. Therefore, the authors employed Mg as the base metal and NiTi shape memory alloy as the reinforcement to the targeted metal matrix composite. The tool offset was linearly varied by tilting the slotted length with respect to the traverse direction. Friction stir processing performed at a rotational speed of 560 rpm and traverse speed of 80 mm/min revealed crucial changes in defect morphology and area, which has been explicated with the quantified variation in tool offset from the advancing side to the retreating side. For the positive offset conditions, i.e., tool offset towards the advancing side, the shape of the tunnelling defect was chiefly convex from the outward direction. Meanwhile, for the negative offset conditions, i.e., tool offset towards the retreating side, the tunnelling defect exhibited a concave outward shape. A transition from rectangular to triangular morphology was also observed as the tool moved from an offset of 1.75 mm in the advancing side to 1.75 mm in the retreating side.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3