Effect of Alkyl Chain Length on the Phase Situation of Glass-Forming Liquid Crystals

Author:

Drzewicz AnnaORCID,Juszyńska-Gałązka EwaORCID,Deptuch AleksandraORCID,Kula PrzemysławORCID

Abstract

The phase behaviour of the latest synthesised compound belonging to a family of (S)-4′-(1-methyloctyloxycarbonyl) biphenyl-4-yl 4-[‘m’-(2,2,3,3,4,4,4-heptafluorobutoxy) ‘m’alkoxy]-benzoates (where ‘m’ means 3, 5 or 7 methylene groups) is described by polarizing optical microscopy, differential scanning calorimetry, X-ray diffraction and Fourier-transform infrared absorption spectroscopy. It has been shown that as the length of the alkyl chain increases, a given liquid crystal possesses a greater number of mesophases and at a higher temperature it goes into the isotropic liquid phase. All examined compounds form a chiral smectic phase with antiferroelectric properties (SmCA* phase), in which the temperature range of occurrence increases with the length of the molecule. The number of methylene groups also affects the glass transition. The compound with the shortest alkyl chain (‘m’ = 3) is vitrified from the conformationally disordered crystal phase. For the compound with five -CH2- groups (‘m’ = 5), a glass transition from the monotropic high-order hexatic smectic SmXA* phase is observed. In the case of the liquid crystal with the longest carbon chain (‘m’ = 7), the vitrification from the less ordered SmCA* phase is visible. Differences in the crystallization kinetics, e.g., the nucleation-controlled mechanism for the compound with the shortest carbon chain vs. the complex phenomenon for its longer homologs, are discussed.

Funder

National Science Centre

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3