Fe3O4-Carbon-Based Composite Derived from the Charge-Transfer Reaction Using Waste Tea Leaves as the Carbon Precursor for Enhanced Removing of Azocarmine G2, Methyl Violet 2B, Eosin B, and Toluidine Blue from Aqueous Solution

Author:

Al-Hazmi Ghaferah H.,Saad Hosam A.ORCID,Refat Moamen S.,Adam Abdel Majid A.

Abstract

Ferric chloride salt (FeCl3) is a typical vacant orbital acceptor that accepts electrons from urea molecules. This donor-acceptor interaction yields a Fe3O4 oxide, which can be used for preparing novel adsorbent material. Activated carbon (AC) materials, derived from biomass precursors and used for environmental remediation, have gained increasing attention owing to their sustainability, eco-friendly nature, ease of fabrication, and cost-effectiveness. Globally, a large amount of consumed tea leaf materials is discarded as solid waste. The present study aimed to reuse consumed tea leaves to generate biomass-derived-ACs and coupling AC with Fe3O4 oxide to generate Fe3O4-carbon-based composite for environmental remediation. The synthesized Fe3O4-carbon-based composite was examined to remove four common organic pollutant dye models from an aqueous solution. The effects of several parameters on the adsorption capacity of the synthesized composite were analyzed, and equilibrium data were examined. We found that the synthesized composite displayed promising adsorption activity against the investigated dyes.

Funder

Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3