Novel Organotin(IV) Complexes of 2-[4-Hydroxy-3-((2-hydroxyethylimino)methyl)phenylazo]benzoic Acid: Synthesis, Structure, Noncovalent Interactions and In Vitro Antibacterial Activity

Author:

Debnath PratimaORCID,Debnath PareshORCID,Roy Manojit,Sieroń LesławORCID,Maniukiewicz WaldemarORCID,Aktar Tamanna,Maiti Debasish,Novikov Alexander S.ORCID,Misra Tarun Kumar

Abstract

Three new organotin(IV) complexes, [Me3Sn(H2L)]2 (1), Bu3Sn(H2L) (2), and [(Bu2Sn(H2L))2O]2 (3) were synthesized by the reaction of 2-[4-hydroxy-3-((2-hydroxyethylimino)methyl)phenylazo]benzoic acid (H3L) with appropriate alkyltin(IV) precursors. The complexes were characterized by elemental analysis, IR, and multinuclear (1H, 13C and 119Sn) NMR spectroscopy. Further, the complex 1 was analyzed by single-crystal X-ray analysis. It displays a 24-membered cyclic dimeric Me3SnIV(H2L) unit where the ligand act as a bridging framework using its carboxylate-O and phenoxy-O atoms. The Sn(IV) adopts distorted trigonal-bipyramidal geometry. In the solution state, the structures were determined by 119Sn-NMR spectroscopy, and the complexes 1 and 2 have distorted tetrahedral geometry, whereas complex 3 shows distorted trigonal-bipyramidal geometry around the tin centres. The Hirshfeld surface analysis and DFT calculations, together with a topological analysis of the electron density distribution in the crystal structure of complex 1, indicate that its molecular packing determined by various noncovalent interactions, including stacking and hydrogen bonding. The antibacterial studies of the ligand and the complexes (1–3) against gram-negative bacteria viz. Klebsiella pneumoniae (A),Vibrio cholerae (M) and Shigella boydii (Q) and gram-positive bacteria viz.Staphylococcus aureus (J), Streptococcus pneumonia (K) are promising and the compounds can be treated as potential common antibacterial materials.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Reference50 articles.

1. Organotin compounds: Toxicology and biomedicinal applications;Appl. Organomet. Chem.,1987

2. Review of organotin compounds: Chemistry and applications;Int. J. Res. Eng. Innov.,2018

3. Synthesis and characterization of glycoconjugate tin (IV) complexes: In vitro DNA binding studies, cytotoxicity, and cell death;J. Organomet. Chem.,2011

4. Synthesis, characterization and in vitro DNA binding studies of tin (IV) complexes of tert-butyl 1-(2-hydroxy-1-phenylethylamino)-3-methyl-1-oxobutan-2-yl carbamate;J. Organomet. Chem.,2011

5. Biological Evaluation of Azo-and Imino-Based Carboxylate Triphenyltin (IV) Compounds;Eur. J. Inorg. Chem.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3