Review on Magnesium Hydride and Sodium Borohydride Hydrolysis for Hydrogen Production

Author:

Ruslan Nuraini,Yahya Muhammad SyarifuddinORCID,Siddique Md. Nurul Islam,Yengantiwar Ashish PrabhakarORCID,Ismail MohammadORCID,Awal Md. Rabiul,Mohd Yusoff Mohd Zaki,Abdul Halim Yap Muhammad Firdaus AsyrafORCID,Mustafa Nurul Shafikah

Abstract

Metal hydrides such as MgH2 and NaBH4 are among the materials for with the highest potential solid-state hydrogen storage. However, unlike gas and liquid storage, a dehydrogenation process has to be done prior to hydrogen utilization. In this context, the hydrolysis method is one of the possible methods to extract or generate hydrogen from the materials. However, problems like the MgH2 passivation layer, high cost and sluggish self-hydrolysis of NaBH4 are the known limiting factors for this process, but they can be overcome with the help of catalysts. In this works, selected studies have been reviewed on the performance of catalysts like chloride, oxide, fluoride, platinum, ruthenium, cobalt and nickel-based on the MgH2 and NaBH4 system. These studies show a significant enhancement in the amount of hydrogen released as compared to the hydrolysis of the pure MgH2 and NaBH4. Therefore, the addition of catalysts is proven as one of the options in improving hydrogen generation via the hydrolysis of MgH2 and NaBH4.

Funder

Ministry of Higher Education

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3