Abstract
Arsenene has received considerable attention because of its unique optoelectronic and nanoelectronic properties. Nevertheless, the research on van der Waals (vdW) heterojunctions based on arsenene has just begun, which hinders the application of arsenene in the optoelectronic and nanoelectronic fields. Here, we systemically predict the stability and electronic structures of the arsenene/WS2 vdW heterojunction based on first-principles calculations, considering the stacking pattern, electric field, and strain effects. We found that the arsenene/WS2 heterostructure possesses a type-II band alignment. Moreover, the electric field can effectively tune both the band gap and the band alignment type. Additionally, the band gap could be tuned effectively by strain, while the band alignment type is robust under strain. Our study opens up a new avenue for the application of ultrathin arsenene-based vdW heterostructures in future nano- and optoelectronics applications. Our study demonstrates that the arsenene/WS2 heterostructure offers a candidate material for optoelectronic and nanoelectronic devices.
Funder
the National Natural Science Foundation of China
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献