Abstract
The quasi-one-dimensional material PdTeI exhibits unusual electronic transport properties at ambient pressure. Here, we systematically investigate both the structural and electronic responses of PdTeI to external pressure, through a combination of electrical transport, synchrotron X-ray diffraction (XRD), and Raman spectroscopy measurements. The charge density wave (CDW) order in PdTeI is fragile and the transition temperature TCDW decreases rapidly with the application of external pressure. The resistivity hump is indiscernible when the pressure is increased to ~1 GPa. Upon further compression, the resistivity dropping is observed approximately ~15 GPa and zero resistance is established above ~20 GPa, suggesting the occurrence of superconductivity. Combined XRD and Raman data evidence that the emergence of superconductivity is accompanied by a pressure-induced amorphization of PdTeI.
Funder
National Natural Science Foundation of China
National Key R&D Program of China
Shanghai Science and Technology Plan
Beijing Natural Science Foundation
CAS Interdisciplinary Innovation Team
Beijing National Laboratory for Condensed Matter Physics
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献