Electronic Structure and Optical Properties of Cu2ZnSnS4 under Stress Effect

Author:

Yang Xiufan,Qin Xinmao,Yan Wanjun,Zhang Chunhong,Zhang Dianxi,Guo Benhua

Abstract

By using the pseudopotential plane-wave method of first principles based on density functional theory, the band structure, density of states and optical properties of Cu2ZnSnS4 under isotropic stress are calculated and analyzed. The results show that Cu2ZnSnS4 is a direct band gap semiconductor under isotropic stress, the lattice is tetragonal, and the band gap of Cu2ZnSnS4 is 0.16 eV at 0 GPa. Stretching the lattice causes the bottom of the conduction band of Cu2ZnSnS4 to move toward lower energies, while the top of the valence band remains unchanged and the band gap gradually narrows. Squeezing the lattice causes the bottom of the conduction band to move toward the high-energy direction, while the top of the valence band moves downward toward the low-energy direction, and the Cu2ZnSnS4 band gap becomes larger. The static permittivity, absorption coefficient, reflectivity, refractive index, electrical conductivity, and energy loss function all decrease when the lattice is stretched, and the above optical parameters increase when the lattice is compressed. When the lattice is stretched, the optical characteristic peaks such as the dielectric function shift to the lower-energy direction, while the optical characteristic peak position shifts to the higher-energy direction when the lattice is compressed.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3