Research on Microstructure and Cracking Behavior of Al-6.2Zn-2Mg-xSc-xZr Alloy Fabricated by Selective Laser Melting

Author:

Pan Wei,Zhai Ziyu,Liu Yantao,Liang Bo,Liang Zhuoheng,Zhang Yongzhong

Abstract

Selective laser melting (SLM) offers obvious advantages in the production of complex parts. However, the traditional 7xxx series aluminum alloy has a serious cracking tendency in the SLM process. Therefore, in order to analyze the microstructure and cracking mechanism, and obtain crack-free aluminum alloy fabricated by SLM, this paper studied the microstructure characteristics of as-deposited Al-6.2Zn-2Mg-xSc-xZr alloy with different Sc, Zr content, as well as the influence mechanism of Sc, Zr on cracking. The results show that with the increase of Sc and Zr content, the crack tendency and grain size decrease. When Sc and Zr content reach 0.6% and 0.36% respectively, cracks can no longer be observed in the as deposited alloy. The microstructure of the as deposited Al-6.2Zn-2Mg-0.6Sc-0.36Zr alloy consists of fine equiaxed and columnar crystals, in which Sc and Zr mainly exist in the aluminum matrix as solid solutions, and some exist in the form of Al3(Sc, Zr). The immediate reason for the absence of cracks is that the microstructure changes from coarse columnar grains to fine equiaxed-columnar grains when the content of Sc and Zr increases. The refined grain size may have the following beneficial effects: It helps with reducing the thickness of the liquid films. This will increase the tear sensitivity of the liquid film and the cracking tendency and therefore lowers the hot cracking tendency; And a refined grain size improves fracture roughness, leading to an enhanced cracking resistance. At the same time, the refinement of the grains will make the feeding channel of the grain boundary shorter and easy to feed, and the fine equiaxed grains can coordinate stress-strain during solidification more effectively than coarse columnar grains, which will decrease the cracking tendency.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3