Effect of Plant Nanocellulose Electrolyte, Zinc Oxide Nanoparticles, and Nano-Chlorophyll Sensitiser on the Dye-Sensitised Solar Cell Performance

Author:

Alanazi Abdullah K.ORCID,Abo-Dief Hala M.ORCID,Alothman Zeid A.,Mohamed Ashraf T.,Pramanik Tanay,Alotaibi Saad H.

Abstract

Owing to ecological concerns and the rapid increase in fossil fuel consumption, sustainable and efficient generation technologies are being developed. The present work aimed at manufacturing DSSC that is based on natural elements for converting the sun energy into electrical energy. ZnO nano materials are used in solar cells as binary compound semiconductor according to their stability, better conductivity, excellent mobility, the best affinity of electrons, and lower cost compared to other semiconductors. Recently, nanocellulose has shown potential as an advanced nanomaterial used in electrochemical conversion devices since it is considered the best abundant Earth biopolymer and is inexpensive and versatile. The constructed DSSC composed of plant nanocellulose (PNC) extracted from banana peel and nano-chlorophyll dye extracted from aloe vera were evaluated as the electrolyte and sensitiser, respectively. With increasing PNC content from 0 to 32 wt.%, both PV parameters and lifetime increase, and voltage decay decreases. The nano particles size modification for three materials carried by ultrasonic waves. Increasing the ultrasonic wave exposure time reduced the size of the Chl particles. The addition of PNC from banana peel to DSSC electrolyte is shown effective. The effect of varying the PNC/nano-chlorophyll content (0–32 wt.%) on the photovoltaic parameters of the DSSC was investigated. The addition of PNC significantly increased the fill factor and sunlight conversion efficiency. The DSSCs showed acceptable performance under relatively low irradiation conditions and different light intensities, indicating that they are suitable for outdoor applications.

Funder

High Altitude Research Center, Taif University

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3