Aboveground Carbon Stocks across a Hydrological Gradient: Ghost Forests to Non-Tidal Freshwater Forested Wetlands

Author:

Shipway Christopher J.1,Duberstein Jamie A.1ORCID,Conner William H.1ORCID,Krauss Ken W.2,Noe Gregory B.3ORCID,Whitmire Stefanie L.1

Affiliation:

1. Baruch Institute of Coastal Ecology and Forest Science, Clemson University, Georgetown, SC 29440, USA

2. U.S. Geological Survey, Wetland and Aquatic Research Center, Lafayette, LA 70506, USA

3. U.S. Geological Survey, Florence Bascom Geoscience Center, Reston, VA 20192, USA

Abstract

Upper estuarine forested wetlands (UEFWs) play an important role in the sequestration of atmospheric carbon (C), which is facilitated by their position at the boundary of terrestrial and maritime environments but threatened by sea level rise. This study assessed the change in aboveground C stocks along the estuarine–riverine hydrogeomorphic gradient spanning salt-impacted freshwater tidal forested wetlands to freshwater forested wetlands in seasonally tidal and nontidal landscape positions. Standing stocks of C in forested wetlands were measured along two major coastal river systems, the Winyah Bay in South Carolina and the Savannah River in Georgia (USA), replicating and expanding a previous study to allow the assessment of change over time. Aboveground C stocks on these systems averaged 172.9 Mg C ha−1, comparable to those found in UEFWs across the globe and distinct from the terrestrial forested ecosystems they are often considered to be a part of during large-scale C inventory efforts. Groundwater salinity conditions as low as 1.3 ppt were observed in conjunction with losses of aboveground C. When viewed in context alongside expected sea level rise and corresponding saltwater intrusion estimates, these data suggest a marked decrease in aboveground C stocks in forested wetlands situated in and around tidal estuaries.

Funder

U.S. Geological Climate Research and Development Program

NIFA/USDA

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3