Development of Road Surface Detection Algorithm Using CycleGAN-Augmented Dataset

Author:

Choi Wansik,Heo Jun,Ahn ChangsunORCID

Abstract

Road surface detection is important for safely driving autonomous vehicles. This is because the knowledge of road surface conditions, in particular, dry, wet, and snowy surfaces, should be considered for driving control of autonomous vehicles. With the rise of deep learning technology, road surface detection methods using deep neural networks (DNN) have been widely used for developing road surface detection algorithms. To apply DNN in road surface detection, the dataset should be large and well-balanced for accurate and robust performance. However, most of the images of road surfaces obtained through usual data collection processes are not well-balanced. Most of the collected surface images tend to be of dry surfaces because road surface conditions are highly correlated with weather conditions. This could be a challenge in developing road surface detection algorithms. This paper proposes a method to balance the imbalanced dataset using CycleGAN to improve the performance of a road surface detection algorithm. CycleGAN was used to artificially generate images of wet and snow-covered roads. The road surface detection algorithm trained using the CycleGAN-augmented dataset had a better IoU than the method using imbalanced basic datasets. This result shows that CycleGAN-generated images can be used as datasets for road surface detection to improve the performance of DNN, and this method can help make the data acquisition process easy.

Funder

Ministry of Land, Infrastructure and Transport

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference33 articles.

1. Friction Measurement Methods and the Correlation between Road Friction and Traffic Safety: A Literature Review;Wallman,2001

2. Linking roadway crashes and tire–pavement friction: a case study

3. Detection of road conditions with CCD cameras mounted on a vehicle

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3