The Importance of Preconditioning for the Sonographic Assessment of Plantar Fascia Thickness and Shear Wave Velocity

Author:

Costello Conor12,Chatzistergos Panagiotis1,Branthwaite Helen1,Chockalingam Nachiappan1ORCID

Affiliation:

1. Centre for Biomechanics and Rehabilitation Technologies, Staffordshire University, Stoke-on-Trent ST4 2DF, UK

2. Tameside and Glossop Integrated Care NHS Foundation Trust, MSK Podiatry Clinic, Ashton Primary Care Centre, 193 Old Street, Ashton-under-Lyne OL6 7SR, UK

Abstract

Plantar fasciopathy is a very common musculoskeletal complaint that leads to reduced physical activity and undermines the quality of life of patients. It is associated with changes in plantar fascia structure and biomechanics which are most often observed between the tissue’s middle portion and the calcaneal insertion. Sonographic measurements of thickness and shear wave (SW) elastography are useful tools for detecting such changes and guide clinical decision making. However, their accuracy can be compromised by variability in the tissue’s loading history. This study investigates the effect of loading history on plantar fascia measurements to conclude whether mitigation measures are needed for more accurate diagnosis. The plantar fasciae of 29 healthy participants were imaged at baseline and after different clinically relevant loading scenarios. The average (±standard deviation) SW velocity was 6.5 m/s (±1.5 m/s) and it significantly increased with loading. Indicatively, five minutes walking increased SW velocity by 14% (95% CI: −1.192, −0.298, t(27), p = 0.005). Thickness between the calcaneal insertion and the middle of the plantar fascia did not change with the tissues’ loading history. These findings suggest that preconditioning protocols are crucial for accurate SW elastography assessments of plantar fasciae and have wider implications for the diagnosis and management of plantar fasciopathy.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3