A High-Performance Anti-Noise Algorithm for Arrhythmia Recognition

Author:

Feng Jianchao12ORCID,Si Yujuan12ORCID,Zhang Yu12,Sun Meiqi2ORCID,Yang Wenke12

Affiliation:

1. School of Electronic and Information Engineering (SEIE), Zhuhai College of Science and Technology, Zhuhai 519041, China

2. College of Communication Engineering, Jilin University, Changchun 130012, China

Abstract

In recent years, the incidence of cardiac arrhythmias has been on the rise because of changes in lifestyle and the aging population. Electrocardiograms (ECGs) are widely used for the automated diagnosis of cardiac arrhythmias. However, existing models possess poor noise robustness and complex structures, limiting their effectiveness. To solve these problems, this paper proposes an arrhythmia recognition system with excellent anti-noise performance: a convolutionally optimized broad learning system (COBLS). In the proposed COBLS method, the signal is convolved with blind source separation using a signal analysis method based on high-order-statistic independent component analysis (ICA). The constructed feature matrix is further feature-extracted and dimensionally reduced using principal component analysis (PCA), which reveals the essence of the signal. The linear feature correlation between the data can be effectively reduced, and redundant attributes can be eliminated to obtain a low-dimensional feature matrix that retains the essential features of the classification model. Then, arrhythmia recognition is realized by combining this matrix with the broad learning system (BLS). Subsequently, the model was evaluated using the MIT-BIH arrhythmia database and the MIT-BIH noise stress test database. The outcomes of the experiments demonstrate exceptional performance, with impressive achievements in terms of the overall accuracy, overall precision, overall sensitivity, and overall F1-score. Specifically, the results indicate outstanding performance, with figures reaching 99.11% for the overall accuracy, 96.95% for the overall precision, 89.71% for the overall sensitivity, and 93.01% for the overall F1-score across all four classification experiments. The model proposed in this paper shows excellent performance, with 24 dB, 18 dB, and 12 dB signal-to-noise ratios.

Funder

the Natural Science Foundation of Guangdong Province

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3