Comparison of Solubilization Treatment Technologies for Phosphorus Release from Anaerobic Digestate of Livestock Manure

Author:

Lee Jae Hwa1,Min Kyung Jin2,An Hyo Jin1,Park Ki Young1ORCID

Affiliation:

1. Department of Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea

2. Department of Tech Center for Research Facilities, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea

Abstract

This study addresses the imminent threat of phosphorus (P) depletion, investigating anaerobically digested livestock manure as a high-concentration P alternative. To achieve this objective, Visual MINTEQ software, a general-purpose software used for chemical equilibrium modeling, was employed to simulate the alteration in P species fractions at different pH levels. The investigation further examined the variation in P release rates and electrical energy consumption across various pretreatment processes as influenced by pH levels. The results indicate a significant pH influence on P release, with enhanced efficacy under both acidic and alkaline conditions. At pH 2, total P concentration peaked at 684 mg·L−1, with 83.0% reactive P, in contrast with pH 10 conditions, which exhibited 504 mg·L−1 and 48.4%, respectively. P release increased with reaction time across all pretreatment processes. Sonication notably increased P release by 126.9%, with the highest reactive P release efficiency at 2.09 mg·L−1·Wh−1, emerging as an optimal process. Simulation results using Visual MINTEQ software indicate that the inclination for P release in alkaline conditions can be ascribed to the heightened presence of hydroxyapatite, brushite, and Ca-Fe (III)-phosphate bonds with rising pH levels. These simulation results, which are consistent with the experimental results, affirm the crucial influence of cations in determining P release on pH values.

Funder

Korea Environmental Industry and Technology Institute

Korean Ministry of Environment

Ministry of Trade, Industry and Energy, Republic of Korea

APC

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3