Spatial and Temporal Variations of the Precipitation Structure in Jiangsu Province from 1960 to 2020 and Its Potential Climate-Driving Factors

Author:

Ren Zikang1,Zhao Huarong12ORCID,Shi Kangming1,Yang Guoliang1

Affiliation:

1. College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China

2. Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China

Abstract

This study investigated the temporal and spatial variations of precipitation duration and intensity in Jiangsu Province from 1960 to 2020 using the IDW spatial interpolation method and Kendall’s tau trend test, based on daily precipitation data collected from 22 meteorological stations. Additionally, a Pearson correlation analysis was conducted to examine the correlations between the occurrence rate and contribution rate of precipitation with different durations and grades, as well as five large-scale climate indices. The results indicated the following trends: (1) An increase in the precipitation duration corresponded to a decrease in the occurrence rates, while the contribution rates initially increased and then decreased. The province was predominantly characterized by 1–3 days of light rainfall, with a higher probability of short-duration heavy rainfall in northern Jiangsu. (2) From 1960 to 2020, most stations experienced decreasing trends in the precipitation duration occurrence and contribution rates, but heavy rainfall increased, suggesting a shift to short-duration heavy precipitation. (3) The Arctic Oscillation (AO) notably negatively correlates with the 9-day occurrence rate of precipitation (9dOR), while it positively correlates significantly with the occurrence rate of moderate rainfall (MROR). The North Atlantic Oscillation (NAO) exhibits a significant positive correlation with the 2-day occurrence rate of precipitation (2dOR) and a notable negative correlation with the 9-day occurrence rate of precipitation (9dOR). The PDO (Pacific Decadal Oscillation) has shown significant positive correlations with the 2-day precipitation occurrence rate (2dOR) and contribution rate (2dCR), a negative correlation with the light rainfall occurrence rate (LROR), and significant positive correlations with both the moderate and heavy rainfall occurrence rates (MROR and HROR, respectively). The AO, NAO, and PDO are potential climate factors that influence changes in the precipitation structure in Jiangsu Province. These research findings offer valuable insights for regional water resource management, flood risk assessment, and predicting future precipitation trends under climate change scenarios.

Funder

Guangxi Key R&D Program

Guilin Key R&D Program

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference64 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3