Abstract
Fibre metal laminates (FMLs) are lightweight structures with high structural performance and are suitable for many industrial applications. This work describes the impact behaviour of novel sisal fibre-reinforced aluminium laminates (SiRAL) and their dependence upon the orientations of the fibres, the composite core used and the surface treatment of the metal skins. A cold-pressing technique is used to produce SiRALs in six configurations. The FMLs here also have treated or untreated aluminium skins (2024 T3) and three different types of core materials (0°/90° fabric, ±45° fabric and random matt). The ±45° core treated SiRAL provides the highest energy absorption and deflection properties. The pre-treatment of aluminium skins using sandpaper, deep cleaning and primer significantly affects the delamination of the panels under bending impact. The findings reveal that the SiRAL concept is a promising multifunctional FML suitable for different applications that require lightweight, bending and impact performance, together with sustainability characteristics.
Funder
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献