Abstract
No-reference image quality assessment is one of the most demanding areas of image analysis for many applications where the results of the analysis should be strongly correlated with the quality of an input image and the corresponding reference image is unavailable. One of the examples might be remote sensing since the transmission of such obtained images often requires the use of lossy compression and they are often distorted, e.g., by the presence of noise and blur. Since the practical usefulness of acquired and/or preprocessed images is directly related to their quality, there is a need for the development of reliable and adequate no-reference metrics that do not need any reference images. As the performance and universality of many existing metrics are quite limited, one of the possible solutions is the design and application of combined metrics. Several possible approaches to their composition have been previously proposed and successfully used for full-reference metrics. In the paper, three possible approaches to the development and optimization of no-reference combined metrics are investigated and verified for the dataset of images containing distortions typical for remote sensing. The proposed approach leads to good results, significantly improving the correlation of the obtained results with subjective quality scores.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献