Numerical Simulation of Heat Transfer and Fluid Flow at Different Stacking Modes in a Refrigerated Room: Application of Pyramidal Stacking Modes

Author:

Sun Yuyao,Wang JinfengORCID,Xie JingORCID

Abstract

By means of the porous media theory, computational fluid dynamic models of heat transfer and fluid flow at different pack stacking modes in a refrigerated room are elaborated. A practical case is simulated, where brick-shaped packs with aquatic products, partially frozen to 261.15 K, are loaded in the room to complete the freezing process down to 255.15 K, followed by long-term frozen food storage at the latter standard temperature. The best freezing completion effect (defined as the maximum reduction of the highest product temperature during a certain residence time) is achieved by using the pyramidal stacking mode whose upper package is in the center of four lower packages (UPF-PSM) with two piles. The highest temperature of aquatic products at a two-pile-UPF-PSM can be reduced from 261.15 to 255.60 K for a residence time of 24 h. Within the same time, the product temperature becomes most uniform at a UPF-PSM. Simultaneously, the best uniformity of flow distribution and highest efficiency of air circulation in a refrigerated room are obtained by using the neat stacking mode (NSM) during the long-term frozen storage. Furthermore, a comprehensive stacking mode is proposed (using UPF-PSM for freezing completion and NSM for long-term frozen storage), which enhances both the freezing completion effect and the efficiency of air circulation in the studied refrigerated room.

Funder

Science and Technology Innovation Action Plan of Shanghai Science and Technology Commission

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3