Spacecraft Telemetry Anomaly Detection Based on Parametric Causality and Double-Criteria Drift Streaming Peaks over Threshold

Author:

Zeng ZefanORCID,Jin Guang,Xu Chi,Chen Siya,Zhang Lu

Abstract

Most of the spacecraft telemetry anomaly detection methods based on statistical models suffer from the problems of high false negatives, long time consumption, and poor interpretability. Besides, complex interactions, which may determine the propagation of anomalous mode between telemetry parameters, are often ignored. To discover the complex interaction between spacecraft telemetry parameters and improve the efficiency and accuracy of anomaly detection, we propose an anomaly detection framework based on parametric causality and Double-Criteria Drift Streaming Peaks Over Threshold (DCDSPOT). We propose Normalized Effective Transfer Entropy (NETE) to reduce the error and noise caused by nonstationarity of the data in the calculation of transfer entropy, and then apply NETE to improve the Multivariate Effective Source Selection (MESS) causal inference algorithm to infer parametric causality. We define the Weighted Source Parameter (WSP) of the target parameter to be detected, then DSPOT is employed to set multi-tier thresholds for target parameter and WSP. At last, two criteria are formulated to determine anomalies. Additionally, to cut the time consumption of the DCDSPOT, we apply Probability Weighted Moments (PWM) for parameter estimation of Generalized Pareto Distribution (GPD). Experiments on real satellite telemetry dataset shows that our method has higher recall and F1-score than other commonly used methods, and the running time is also significantly reduced.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3