Abstract
In recent years, an increasing amount of short-chain perfluoroalkyl substance (PFAS) alternatives has been used in industrial and commercial products. However, short-chain PFASs remain persistent, potentially toxic, and extremely mobile, posing potential threats to human health because of their widespread pollution and accumulation in the water cycle. This study systematically summarized the removal effect, operation conditions, treating time, and removal mechanism of various low carbon treatment techniques for short-chain PFASs, involving adsorption, advanced oxidation, and other practices. By the comparison of applicability, pros, and cons, as well as bottlenecks and development trends, the most widely used and effective method was adsorption, which could eliminate short-chain PFASs with a broad range of concentrations and meet the low-carbon policy, although the adsorbent regeneration was undesirable. In addition, advanced oxidation techniques could degrade short-chain PFASs with low energy consumption but unsatisfied mineralization rates. Therefore, combined with the actual situation, it is urgent to enhance and upgrade the water treatment techniques to improve the treatment efficiency of short-chain PFASs, for providing a scientific basis for the effective treatment of PFASs pollution in water bodies globally.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Liaoning Province of China
Liaoning Revitalization Talents Program
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science