Combining Hyperspectral Reflectance and Multivariate Regression Models to Estimate Plant Biomass of Advanced Spring Wheat Lines in Diverse Phenological Stages under Salinity Conditions

Author:

El-Hendawy SalahORCID,Al-Suhaibani Nasser,Mubushar MuhammadORCID,Tahir Muhammad Usman,Marey Samy,Refay Yahya,Tola ElKamil

Abstract

An area of growing interest in wheat-breeding programs for abiotic stresses is the accurate and expeditious phenotyping of large genotype collections using nondestructive hyperspectral sensing tools. The main goal of this study was to use data from canopy spectral signatures (CSS) in the full-spectrum range (400–2500 nm) to estimate and predict the plant biomass dry weight at booting (BDW-BT) and anthesis (BDW-AN) growth stages, and biological yield (BY) of 64 spring wheat germplasms exposed to 150 mM NaCl using 13 spectral reflectance indices (SRIs, consisting of seven vegetation-related SRIs and six water-related SRIs) and partial least squares regression (PLSR). SRI and PLSR performance in estimating plant traits was evaluated during two years at BT, AN, and early milk grain (EMG) growth stages. Results showed significant genotypic differences between the three traits and SRIs, with highly significant two-way and three-way interactions between genotypes, years, and growth stages for all SRIs. Genotypic differences in CSS and the relationships between the three traits and a single wavelength over the full-spectrum range depended on the growth stage. Water-related SRIs were more strongly correlated with the three traits compared with vegetation-related SRIs at the BT stage; the opposite was found at the EMG stage. Both types of SRIs exhibited comparable associations with the three traits at the AN stage. Principal component analysis indicated that it is possible to assess plant biomass variations at an early stage (BT) through published and modified SRIs. SRIs coupled with PLSR models at the BT stage exhibited good prediction capacity of BDW-BT (57%), BDW-AN (82%), and BY (55%). Overall, results demonstrated that the integration of SRIs and multivariate models may present a feasible tool for plant breeders to increase the efficiency of the evaluation process and to improve the genetics for salt tolerance in wheat-breeding programs.

Funder

National Plan for Science, Technology and innovation (MAARIFAH), King Abdul-Aziz City for Science and Technology, Kingdom of Saudi Arabia

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference89 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3