Influence of Ageing on Abrasion Volume Loss, Density, and Structural Components of Subfossil Oak

Author:

Rede Vera,Essert SaraORCID,Kocijan MartinaORCID,Dubravac Tomislav

Abstract

Subfossil oak wood has spent centuries or millennia in the aquatic medium (rivers, lakes, bogs, etc.) and, due to water anoxic conditions, its decomposition is very slow. As a result of its long residing in specific conditions, its chemical composition, appearance, as well as mechanical and tribological properties have changed. Because of its aesthetic and mechanical properties, subfossil wood is very attractive and often used to produce valuable objects. The main objective of this study was to test how abrasion wear resistance of subfossil oak is affected by ageing. The effects of ageing on wood density and on the structure of lignin and cellulose were tested, as well as the loss of volume during abrasion in correlation with these changes. A study was conducted on samples of recent (regular) pedunculate oak wood and on six subfossil pedunculate oak samples in the age range of 890 and nearly 6000 years. Abrasion wear resistance was expressed through the loss of volume recorded using the Taber abraser. The smallest abrasion volume loss was measured for the recent oak specimens. Linear regression analyses showed that there was a very strong negative linear relationship between the age of subfossil oak and its abrasion volume loss. There was also a strong, but positive and significant linear correlation between subfossil oak age and density. Ageing also affected the structural composition of wood. Results obtained by Fourier Transform Infrared spectroscopy indicated a reduction of the relative crystalline fraction of subfossil wood in recent oak. The degradation of lignin in subfossil oak samples progressed more slowly over time than cellulose degradation. There was a negative correlation between age and the ratio of cellulose and lignin degradation; however, that relationship was found statistically insignificant. Similar results were obtained for the relationship between abrasion wear resistance and changes in the structural composition of the studied samples of subfossil oak wood.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3