Modular Combined DC-DC Autotransformer for Offshore Wind Power Integration with DC Collection

Author:

Song Yuanjian,Zhang Zheren,Xu ZhengORCID

Abstract

Offshore wind farms (OWFs) integration are attractive extensively for furnishing more robust power than land wind farms. This paper introduces a modular combined DC-DC autotransformer (MCAT), which contributes to the offshore wind power integration of DC grids with different voltage levels. Traditional DC transformers contains medium- or high-frequency converter transformers, which have the disadvantages of high manufacturing difficulty and cost. These shortcomings seriously affect the progress of commercial application of DC transformers. To solve these problems, in the proposed MCAT, converter transformers are replaced with a DC-isolation capacitor and a compensation inductor in series to reduce the footprint of offshore platforms and improve economy. Theoretical analysis is carried out for the MCAT operation principle. Selection methods of main circuit parameters for the MCAT are discussed in detail. Then, corresponding control strategies of the MCAT are proposed. Finally, the effectiveness of the proposed MCAT and its control strategies are validated by time domain simulations in PSCAD/EMTDC. The time-domain simulation results show the correctness of the main circuit parameters and the rationality of the MCAT control strategies.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A new hybrid multilevel thyristor-based DC-DC converter;Alexandria Engineering Journal;2023-12

2. A Modular MMC Based DC-DC Converter with DC Fault Blocking Capability;2022 IEEE 7th Southern Power Electronics Conference (SPEC);2022-12-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3