Nanostructured Top Contact as an Alternative to Transparent Conductive Oxides in Tandem Perovskite/c-Si Solar Cells

Author:

Elshorbagy Mahmoud H.ORCID,Esteban OscarORCID,Cuadrado AlexanderORCID,Alda JavierORCID

Abstract

In the competition of solar cell efficiency, besides top-performance multijunction cells, tandem cells based on perovskites are also breaking efficiency records to enter into the 30% range. Their design takes advantage of the rapid development of perovskite cells, and the good sharing of the available spectrum between the perovskite, absorbing at short wavelengths, and the c-Si or similar lower band gap material, working at longer wavelengths. In this paper, we present a novel tandem solar cell that combines crystalline silicon (c-Si) and perovskites cells. We analyzed the device with computational electromagnetism based on the finite element method. Our design arranges the perovskite solar cell as a multilayer 1D grating, which is terminated with a gold thin film (top metallic contact). This multilayer nanostructure is placed on top of the c-Si cell and a thin protective dielectric layer of aluminum nitride covers the whole device. The short-circuit current of the perovskite cell is maximized by maintaining the current-matching conditions with the output from the c-Si cell. This optimization considers the geometrical parameters of the grating: period and thickness of the active layer of the perovskite cell. We compared the simulated short-circuit current of this device to the planar tandem solar cell with indium tin oxide (top contact). The comparison shows a slight increment, around 3%, of our device’s performance. Moreover, it has the potential capability to circumvent postprocessing procedures used with transparent contact oxides, which can reduce the device’s final efficiency. Furthermore, our proposed design can take advantage of photolithographic and nanoimprint techniques, enabling large-scale production at a relatively low cost.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3