Reducing the Total Product Cost at the Product Design Stage

Author:

Relich MarcinORCID,Nielsen Izabela,Gola ArkadiuszORCID

Abstract

Currently used decision support systems allow decision-makers to evaluate the product performance, including a net present value analysis, in order to enable them to make a decision regarding whether or not to carry out a new product development project. However, these solutions are inadequate to provide simulations for verifying a possibility of reducing the total product cost through changes in the product design phase. The proposed approach provides a framework for identifying possible variants of changes in product design that can reduce the cost related to the production and after-sales phase. This paper is concerned with using business analytics to cost estimation and simulation regarding changes in product design. The cost of a new product is estimated using analogical and parametric models that base on artificial neural networks. Relationships identified by computational intelligence are used to prepare cost estimation and simulations. A model of product development, production process, and admissible resources is described in terms of a constraint satisfaction problem that is effectively solved using constraint programming techniques. The proposed method enables the selection of a more appropriate technique to cost estimation, the identification of a set of possible changes in product design towards reducing the total product cost, and it is the framework for developing a decision support system. In this aspect, it outperforms current methods dedicated for evaluating the potential of a new product.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3